

PA-003-1016032 Seat No. _____

B. Sc. (Sem. VI) (CBCS) Examination

March / April - 2020

Physics : Paper - 602

(Statistical Mechanics & Solid State Physics)
(New Course)

Faculty Code : 003

Subject Code : 1016032

Time : $2\frac{1}{2}$ Hours] [Total Marks : **70**

Instructions : (1) All questions are compulsory.
(2) Symbols have their usual meanings.
(2) Figures to the right indicate marks.

Physical Constants :

$$h = 6.62 \times 10^{-34} \text{ Js}, \quad \hbar = 1.055 \times 10^{-34} \text{ Js}, \quad \text{Boltzmann constant}$$
$$k = 1.38 \times 10^{-23} \text{ J/K}, \quad R = 8.3 J \text{ mol}^{-1} K^{-1},$$

$$\text{Mass of an electron} = 9.1 \times 10^{-31} \text{ Kg}.$$

1 (A) Answer the following objective questions : 4

- (1) Electrons are Fermions. True or false?
- (2) The six dimensional space consisting three position coordinates and three momentum coordinates is known as _____.
- (3) Write the equation giving Maxwell Boltzmann distribution law.
- (4) Fermi Dirac distribution is applicable to particles with spin equal to $\frac{1}{2}\hbar, \frac{3}{2}\hbar$ etc. True or false?

(B) Answer any **one question : 2**

- (1) If 3 particles are arranged in an energy level having a degeneracy $g_i = 4$, find the number of ways the distributions are possible if the particles are (a) Fermions (b) Bosons.
- (2) The Fermi level for potassium is 2.1 eV. Calculate the velocity of an electron at the Fermi level.

(C) Answer any **one** question : 3

- (1) Derive the expression for volume in phase space.
- (2) Distinguish between Maxwell Boltzmann distribution, Bose Einstein distribution and Fermi Dirac distribution.

(D) Answer any **one** in detail : 5

- (1) Derive Maxwell-Boltzmann distribution law.
- (2) Starting with the basic postulates, derive Bose-Einstein distribution law.

2 (A) Answer the following objective questions : 4

- (1) Define unit cell.
- (2) $a = b = c$ and $\alpha = \beta = \gamma = 90^\circ$, defines a _____ crystal
- (3) According to Dulong and Petit's law, the molar specific heat of a solid $C_v = 3R$. True or false?
- (4) What is hydrogen bonding ?

(B) Answer any **one** question : 2

- (1) What would be the effect on the specific heat of solids at room temperature if Planck's constant were increased by ten fold ?
- (2) Find the ratio of intercepts on the three axes by (123) plane in a simple cubic crystal.

(C) Answer any **one** question : 3

- (1) Write a note on metallic crystals.
- (2) What are the criticisms against Debye's theory?

(D) Answer any **one** in detail : 5

- (1) Write a note on Miller indices giving one example.
- (2) Derive the classical equation (Dulong and Petit's law) for the specific heat of solids.

3 (A) Answer the following objective questions : 4

- (1) Define density of states.
- (2) At absolute zero the Fermi function $f(E) = 1$ for $E < E_F$. True or false?
- (3) Define Fermi energy.
- (4) Write Ohm's law in vector form.

(B) Answer any **one** question : 2

(1) Show that the wavelength associated with an electron having an energy equal to Fermi energy

$$\text{is given by, } \lambda_F = 2 \left[\frac{\pi}{3N} \right]^{\frac{1}{3}}$$

(2) Calculate the number of energy states available for electrons in cubical box of side 1 cm lying below an energy of 1 eV .

(C) Answer any **one** question : 3

(1) Derive Boltzmann equation.
(2) What is Hall effect? Derive an expression for Hall coefficient.

(D) Answer any **one** in detail : 5

(1) Explain free electron gas in one dimension.
(2) Explain density of states $D(E)$ in one dimension.

4 (A) Answer the following objective questions : 4

(1) In an intrinsic semiconductor, $n = p$. True or false?
(2) In an n-type semiconductor the donor level is just above the valence band. True or false?
(3) Define band gap.
(4) Define extrinsic semiconductors.

(B) Answer any **one** question : 2

(1) In an n type semiconductor, the Fermi level lies 0.3 eV below the conduction band at $300K$. If the temperature is increased to $330K$, find the new position of the Fermi level.
(2) The mobilities of electrons and holes in a sample of intrinsic germanium at $300K$ are $0.36\text{ }m^2V^{-1}s^{-1}$ and $0.17\text{ }m^2V^{-1}s^{-1}$ respectively. If the conductivity of the specimen is $2.12\Omega^{-1}m^{-1}$, calculate the intrinsic carrier density of germanium.

(C) Answer any **one** question : 3

- (1) Explain donor states in an extrinsic semiconductor.
- (2) Write a note on intrinsic semiconductor.

(D) Answer any **one** in detail : 5

- (1) Explain electron-hole carrier concentration in semiconductors.
- (2) Explain the electrical conductivity and bonding in semiconductors.

5 (A) Answer the following objective questions : 4

- (1) Superconductors are perfect diamagnetic materials. True or false?
- (2) The minimum magnetic field necessary to destroy superconductivity is known as _____.
- (3) What are Cooper pair of electrons ?
- (4) In a type I superconductor there are two critical magnetic fields. True or false?

(B) Answer any **one** question : 2

- (1) For a specimen of V_3G_a , the critical fields are respectively 1.4×10^5 A/m and 4.2×10^5 A/m for 14 K and 13K. Find the transition temperature.
- (2) Hg has an isotopic mass 199 and $T_c = 4.185K$. If the isotopic mass changes to 202, calculate its T_c ?

(C) Answer any **one** question : 3

- (1) Write five properties which change during superconducting transition.
- (2) Explain Meissner effect.

(D) Answer any **one** in detail : 5

- (1) Explain the thermodynamics of superconducting transition.
- (2) Explain the BCS theory.
